Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA

Abstract
Secondary metabolites, including toxins and melanins, have been implicated as virulence attributes in invasive aspergillosis. Although not definitively proved, this supposition is supported by the decreased virulence of an Aspergillus fumigatus strain, ΔlaeA, that is crippled in the production of numerous secondary metabolites. However, loss of a single LaeA-regulated toxin, gliotoxin, did not recapitulate the hypovirulent ΔlaeA pathotype, thus implicating other toxins whose production is governed by LaeA. Toward this end, a whole-genome comparison of the transcriptional profile of wild-type, ΔlaeA, and complemented control strains showed that genes in 13 of 22 secondary metabolite gene clusters, including several A. fumigatus–specific mycotoxin clusters, were expressed at significantly lower levels in the ΔlaeA mutant. LaeA influences the expression of at least 9.5% of the genome (943 of 9,626 genes in A. fumigatus) but positively controls expression of 20% to 40% of major classes of secondary metabolite biosynthesis genes such as nonribosomal peptide synthetases (NRPSs), polyketide synthases, and P450 monooxygenases. Tight regulation of NRPS-encoding genes was highlighted by quantitative real-time reverse-transcription PCR analysis. In addition, expression of a putative siderophore biosynthesis NRPS (NRPS2/sidE) was greatly reduced in the ΔlaeA mutant in comparison to controls under inducing iron-deficient conditions. Comparative genomic analysis showed that A. fumigatus secondary metabolite gene clusters constitute evolutionarily diverse regions that may be important for niche adaptation and virulence attributes. Our findings suggest that LaeA is a novel target for comprehensive modification of chemical diversity and pathogenicity. Patients with suppressed immune systems due to cancer treatments, HIV/AIDS, or organ transplantation are at high risk of infection from microbes. Some of the most deadly infections for such patients arise from a fungal pathogen, Aspergillus fumigatus. This species, like several of its close relatives, can produce an array of small chemical compounds that influences both the infection process and its environmental niche outside of the host. The genes dedicated to production of each compound are clustered adjacent to each other in the genome. One protein named LaeA is a master regulator of such clustered small molecule genes, and removal of the gene encoding LaeA cripples the organism's ability to infect. We conducted a genome-wide microarray experiment to identify small molecule gene clusters controlled by the presence of LaeA in A. fumigatus. In doing so, we identified actively expressed gene clusters critical for small molecule production and potentially involved in disease progression. These results also provide insight into evolutionary events shaping the organism's collection of chemical compounds.