Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops

Abstract
Eukaryotic MutSβ is a heterodimer composed of Msh2 and Msh3 that recognizes insertion-deletion loops (IDLs) and 3′ overhangs during mismatch repair. Now crystal structures of MutSβ in complex with DNA, containing IDLs of varying lengths, reveal that this complex interacts with its substrate differently than MutSα and bacterial MutS do. DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutSα is well characterized. We report here crystal structures of human MutSβ in complex with DNA containing insertion-deletion loops (IDL) of two, three, four or six unpaired nucleotides. In contrast to eukaryotic MutSα and bacterial MutS, which bind the base of a mismatched nucleotide, MutSβ binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flipped out into the major groove and partially exposed to solvent. A normal downstream base pair can become unpaired; a single unpaired base can thereby be converted to an IDL of two nucleotides and recognized by MutSβ. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair.

This publication has 54 references indexed in Scilit: