Experimental and Computational Evidence for Gold Vinylidenes: Generation from Terminal Alkynes via a Bifurcation Pathway and Facile C–H Insertions

Abstract
Facile cycloisomerization of (2-ethynylphenyl)alkynes is proposed to be promoted synergistically by two molecules of BrettPhosAuNTf2, affording tricyclic indenes in mostly good yields. A gold vinylidene is most likely generated as one of the reaction intermediates on the basis of both mechanistic studies and theoretical calculations. Different from the well-known Rh, Ru, and W counterparts, this novel gold species is highly reactive and undergoes facile intramolecular C(sp3)–H insertions as well as O–H and N–H insertions. The formation step for the gold vinylidene is predicted theoretically to be complex with a bifurcated reaction pathway. A pyridine N-oxide acts as a weak base to facilitate the formation of an alkynylgold intermediate, and the bulky BrettPhos ligand in the gold catalyst likely plays a role in sterically steering the reaction toward formation of the gold vinylidene.