An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types.

Abstract
Electron microscope autoradiography was used to study the cellular localization of seven glycoproteins rapidly cleared from the circulating plasma of rats and taken up by the liver. 1 and 15 min after intravenous administration of the 125I-glycoproteins, livers were fixed in situ by perfusion and processed for autoradiography. Autoradiographic grains in the developed sections were found to represent the intact 125I-ligand. A quantitative analysis of the distribution and concentration (density) of autoradiographic grains over the three major cell types of the liver was then performed. Three molecules, asialo-fetuin, asialo-orosomucoid, and lactosaminated RNase A dimer, the oligosaccharide chains of which terminate in galactose residues, were bound and internalized almost exclusively (greater than 90%) by hepatocytes. Conversely, four molecules, the oligosaccharide chains of which terminate in either N-acetyl-glucosamine (agalacto-orosomucoid) or mannose (ahexosamino-orosomucoid, preputial beta-glucuronidase, and mannobiosaminated RNase A dimer), were specifically bound and internalized by cells lining the blood sinusoids--that is, by Kupffer cells and endothelial cells. Endothelial cells were two to six times more active (on a cell volume basis) than were Kupffer cells in the internalization of these four 125I-ligands. Mannose and N-acetylglucosamine-terminated glycoproteins competed with each other for uptake into either endothelial cells or Kupffer cells, indicating that a single system recognized mannose or N-acetyl-glucosamine residues. Finally, agalacto-orosomucoid and ahexosamino-orosomucoid were also associated with hepatocytes, but competition experiments utilizing excess asialo-orosomucoid demonstrated that residual galactosyl residues were responsible for this association.

This publication has 53 references indexed in Scilit: