Dynamics of Prestressed Semiflexible Polymer Chains as a Model of Cell Rheology

Abstract
We report on a model of a prestressed nonlinear semiflexible polymer chain that links thermally driven dynamics to the creep behavior of living cells. Numerical simulations show that the chain’s creep follows a power law with an exponent that decreases with increasing prestress. This is related to the propagation of free energy through the chain in response to stretching, where the propagation speed is regulated by the prestress via the chain’s nonlinear elasticity. These results indicate that the main aspects of cell rheology are consistent with the dynamics of single polymer chains under tension.

This publication has 21 references indexed in Scilit: