The Cell Adhesion Molecule “CAR” and Sialic Acid on Human Erythrocytes Influence Adenovirus In Vivo Biodistribution

Abstract
Although it has been known for 50 years that adenoviruses (Ads) interact with erythrocytes ex vivo, the molecular and structural basis for this interaction, which has been serendipitously exploited for diagnostic tests, is unknown. In this study, we characterized the interaction between erythrocytes and unrelated Ad serotypes, human 5 (HAd5) and 37 (HAd37), and canine 2 (CAV-2). While these serotypes agglutinate human erythrocytes, they use different receptors, have different tropisms and/or infect different species. Using molecular, biochemical, structural and transgenic animal-based analyses, we found that the primary erythrocyte interaction domain for HAd37 is its sialic acid binding site, while CAV-2 binding depends on at least three factors: electrostatic interactions, sialic acid binding and, unexpectedly, binding to the coxsackievirus and adenovirus receptor (CAR) on human erythrocytes. We show that the presence of CAR on erythrocytes leads to prolonged in vivo blood half-life and significantly reduced liver infection when a CAR-tropic Ad is injected intravenously. This study provides i) a molecular and structural rationale for Ad–erythrocyte interactions, ii) a basis to improve vector-mediated gene transfer and iii) a mechanism that may explain the biodistribution and pathogenic inconsistencies found between human and animal models. In most cases, adenoviruses are thought to initially enter the host via contact with epithelial cells and spread within the host via an unknown mechanism. Most adenovirus serotypes use a cell adhesion molecule dubbed “CAR” to attach to cells. To assess, predict and understand adenovirus biology and vectorology, many in vivo studies use mice and monkeys. These animal models have been considered reliable models in the realm of viral pathogenesis and gene transfer. One of the implications of our study suggests that the rat may be a more appropriate model during intravenous adenovirus delivery because like humans, and unlike mice and monkeys, they also express CAR on their erythrocytes. The identification of CAR on human erythrocytes explains a 50-year-old enigma of adenovirus hemagglutination, helps us better understand adenovirus in vivo biology and may open new avenues to understand the role of cell adhesion molecules during erythropoiesis.