Attosecond optoelectronic field measurement in solids

Abstract
The sub-cycle interaction of light and matter is one of the key frontiers of inquiry made accessible by attosecond science. Here, we show that when light excites a pair of charge carriers inside of a solid, the transition probability is strongly localized to instants slightly after the extrema of the electric field. The extreme temporal localization is utilized in a simple electronic circuit to record the waveforms of infrared to ultraviolet light fields. This form of petahertz-bandwidth field metrology gives access to both the modulated transition probability and its temporal offset from the laser field, providing sub-fs temporal precision in reconstructing the sub-cycle electronic response of a solid state structure. Characterization of light pulses is important in order to understand their interaction with matter. Here the authors demonstrate a nonlinear photoconductive sampling method to measure electric field wave-forms in the infrared, visible and ultraviolet spectral ranges.