α3β1 integrin promotes keratinocyte cell survival through activation of a MEK/ERK signaling pathway

Abstract
Inadequate or inappropriate adhesion of epithelial cells to extracellular matrix leads to a form of apoptosis known as anoikis. During various tissue remodelling events, such as wound healing or carcinoma invasion, changes in the physical properties, and/or composition of the extracellular matrix, can lead to anoikis of epithelial cells that lack appropriate receptor-matrix interactions. Laminin-5 is the major ligand for keratinocyte adhesion in the epidermis, and it also promotes keratinocyte survival in vivo and in vitro. Integrins α3β1 and α6β4 are the major receptors for laminin-5; however, specific roles for these integrins in keratinocyte survival have not been determined. In the current study, we exploited keratinocyte cell lines derived from wild-type or α3 integrin knockout mice to reveal a critical role for α3β1 in protecting keratinocytes from apoptosis upon serum withdrawal. We show that α3β1-mediated adhesion to laminin-5 extracellular matrix inhibits proteolytic activation of caspase-3 and TUNEL-staining, both hallmarks of apoptosis. We also show that α3β1-mediated adhesion activates focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), and that inhibition of either FAK or ERK signaling leads to apoptosis of keratinocytes attached to laminin-5. α6β4-mediated adhesion to laminin-5 only partially protects cells from apoptosis in the absence of α3β1, and α6β4 is not necessary for cell survival in the presence of α3β1. These results suggest that α3β1 is necessary and sufficient for maximal keratinocyte survival on laminin-5. We propose a model to address the potential importance of α3β1-mediated survival for migrating keratinocytes at the leading edge of a cutaneous wound.