Synthetic selectivity through avoidance of valence frustration

Abstract
A series of di-copper(I) complexes has been prepared via the reaction of copper(I) tetrafluoroborate, 2,6-diformylpyridine, 8-aminoquinoline, and a series of aliphatic diamines and 4-substituted anilines. To avoid a "valence-frustrated" state, involving a mismatch between the number of ligand donor atoms and the number of metal acceptor sites, the product structures formed selectively: One of the formyl groups of the diformylpyridine reacted specifically with the aminoquinoline, whereas the other formyl group reacted with the diamine or aniline. The observed selectivity was demonstrated to be thermodynamic in nature: When two dicopper complexes that were stable yet "valence-frustrated" were mixed, an imine metathesis reaction was observed to occur spontaneously to generate a "valence-satisfied" structure. In addition to control over the constitution of the ligands, we were able to exercise control over their relative orientations within the complex. Diamines exclusively gave structures in which the ligand exhibited a head-to-head orientation along the copper-copper axis to avoid stretching. Anilines gave predominantly head-to-tail structures, with the proportion of head-to-head isomer decreasing in complexes that incorporate more electron-deficient anilines and disappearing in less polar solvents. We also demonstrated the removal of the metals and the hydrogenation of the imine bonds to generate a molecule containing nonexchanging secondary amines, suggesting potential uses of this technique in the domain of organic synthesis.