Oxidation/reduction state of cytochrome oxidase during repetitive contractions

Abstract
There is disagreement regarding whether inadequate O2 determines maximal O2 uptake (VO2max) and lactic acid output (L) during muscular activity. Direct assessment of mitochondrial cytochrome oxidase (cytochrome a-a3) oxidation/reduction (O/R) state should provide an unequivocal answer for this issue. A new near-infrared spectrophotometric method was used to measure the O/R state of cytochrome a-a3 of dog gastrocnemius-plantaris muscle in situ during repetitive isotonic twitch and tetanic contractions. Three contraction frequencies were used for each contraction type in alternating sequence to provide a wide range of VO2 up to VO2max. VO2 and L were measured after 3 and 9 min of a 10-min contraction period, and 15 min were allowed for recovery between contraction periods. VO2 increased with contraction frequency. L was variably increased with contraction frequency at 3 min and uptake usually occurred at 9 min, except at the highest tetanic frequency. The O/R span of cytochrome a-a3 was determined by respiring the animals with 100% N2 to determine the most reduced state. This was followed by respiration with 100% O2, which gave the most oxidized state transiently during recovery. Within this span in muscles at rest, cytochrome a-a3 was 50-80% oxidized. During contractions of both types at all frequencies, cytochrome a-a3 always became more oxidized by an additional 10-20%. These findings should put to rest any arguments that inadequate O2 is a determinant of VO2max or L under the conditions of these experiments: repetitive contractions with free flow in self-perfused muscles and normoxia.