The Rheology of Wetting By Polymer Melts

Abstract
Theoretically, the rate of capillary penetration of a polymer melt into a slit, a model for a surface irregularity, has been shown to depend on γcosθ/η) where γ refers to the surface tension of the liquid, η its viscosity and θ a time-dependent contact angle. Analytical expressions relating the depth of penetration with time have been experimentally verified by observations of the penetration of molten polyethylene and poly-(ethylene-vinyl acetate) into aluminum channels. Values of η, calculated from the observed data, agree closely with independent determinations of this material parameter. A theoretical treatment has also been developed which describes the velocity of spreading of a liquid drop over a flat surface. Flow equations for the flow of free films were adapted for this purpose. The spreading velocity is predicted to depend on the product of three factors (1) a scaling factor, (γ/η1Ro), where Ro is the initial radius of curvature, (2) cosθ. (l-cosθ/cosθ) where θ refers to the equilibrium value of θ, and (3) geometric terms. After demonstrating that a drop of molten polymer may be treated as a spherical cap, the predicted dependence of spreading rate on drop size, cosθ (nature of the substrate) and the scaling factor was experimentally verified. Some discrepancies noted at long times and high temperatures are discussed.