Abstract
Colony development, which includes hyphal extension, branching, anastomosis, and asexual sporulation, is a fundamental aspect of the life cycle of filamentous fungi; genetic mechanisms underlying these phenomena are poorly understood. We conducted transcriptional profiling during colony development of the model filamentous fungus Neurospora crassa, using 70-mer oligonucleotide microarrays. Relative mRNA expression levels were determined for six sections of defined age excised from a 27-h-old N. crassa colony. Functional category analysis showed that the expression of genes involved in cell membrane biosynthesis, polar growth, and cellular signaling was enriched at the periphery of the colony. The relative expression of genes involved in protein synthesis and energy production was enriched in the middle section of the colony, while sections of the colony undergoing asexual development (conidiogenesis) were enriched in expression of genes involved in protein/peptide degradation and unclassified proteins. A cross-examination of the N. crassa data set with a published data set of Aspergillus niger revealed shared patterns in the spatiotemporal regulation of gene orthologs during colony development. At present, less than 50% of genes in N. crassa have functional annotation, which imposes the chief limitation on data analysis. Using an evolutionary approach, we observed that the expression of phylogenetically conserved groups of genes was enriched in the middle section of an N. crassa colony whereas expression of genes unique to euascomycete species and of N. crassa orphan genes was enriched at the colony periphery and in the older, conidiating sections of a fungal colony.