Isoleucyl-tRNA synthetase from bakers' yeast: multistep proofreading in discrimination between isoleucine and valine with modulated accuracy, a scheme for molecular recognition by energy dissipation

Abstract
For discrimination between isoleucine and valine by isoleucyl-tRNA synthetase from yeast, a multistep sequence is established. The initial discrimination of the substrates is followed by a pretransfer and a posttransfer hydrolytic proofreading process. The overall discrimination factor D was determined from kcat and Km values observed in aminoacylation of tRNAIle-C-C-A with isoleucine and valine. From aminoacylation of the modified tRNA species tRNAIle-C-C-3'dA and tRNAIle-C-C-A (3'NH2), the initial discrimination factor I (valid for the reversible substrate binding) and the proofreading factor P1 (valid for the aminoacyl adenylate formation) could be determined. Factor I was computed from ATP consumption and D1, the overall discrimination factor for this partial reaction which can be obtained from kinetic constants, and P1 was calculated from AMP formation rates. Proofreading factor P2 (valid for aminoacyl transfer reaction) was determined from AMP formation rates observed in aminoacylation of tRNAIle-C-C-A and tRNAIle-C-C-3'dA. From the initial discrimination factor I and the AMP formation rates, discrimination factor DAMP in aminoacylation of tRNAIle-C-C-A can be calculated. These values deviate by a factor II from factor D obtained by kinetics which may be due to the fact that for acylation of tRNAIle-C-C-A an initial discrimination factor I' = III is valid. The observed overall discrimination varies up to a factor of 16 according to conditions. Under optimal conditions, 38 000 correct aminoacyl-tRNAs are produced per 1 error while the energy of 5.5 ATPs is dissipated. With the determined energetic and molecular flows for the various steps of the enzymatic reaction, a coherent picture of this new type of "far away from equilibrium enzyme" emerges.