Albumin microspheres as carriers for the antiarthritic drug celecoxib

Abstract
The present study investigates the preparation of celecoxib-loaded albumin microspheres and the biodistribution of technetium-99m (99mTc)-labeled celecoxib as well as its microspheres after intravenous administration. Microspheres were prepared using a natural polymer BSA using emulsification chemical cross-linking method. The prepared microspheres were characterized for entrapment efficiency, particle size, and in vitro drug release. Surface morphology was studied by scanning electron microscopy. Biodistribution studies were performed by radiolabeling celecoxib (CS) and its microspheres (CMS) using99mTc and injecting arthritic rats intravenously. The geometric mean diameter of the microspheres was found to be 5.46 μm. In vitro release studies indicated that the microspheres sustained the release of the drug for }6 days. Radioactivity measured in different organs after intravenous administration of celecoxib solution showed a significant amount of radioactivity in the liver and spleen. In case of celecoxib-loaded microspheres, a significant amount of radioactivity accumulated in the lungs. No significant difference (P>.1) in the radioactivity was observed between the inflamed joint and the noninflamed joint following intravenous injection of99mTc-CS. However, in case of the microspheres (CMS), the radioactivity present in the inflamed joint was 2.5-fold higher than in the noninflamed joint. The blood kinetic studies revealed that celecoxib-loaded albumin microspheres exhibited prolonged circulation than the celecoxib solution.