Deep borehole disposal of nuclear waste: engineering challenges

Abstract
In recent years, geological disposal of radioactive waste has focused on placement of high- and intermediate-level wastes in mined underground caverns at depths of 500–800 m. Notwithstanding the billions of dollars spent to date on this approach, the difficulty of finding suitable sites and demonstrating to the public and regulators that a robust safety case can be developed has frustrated attempts to implement disposal programmes in several countries, and no disposal facility for spent nuclear fuel exists anywhere. The concept of deep borehole disposal was first considered in the 1950s, but was rejected as it was believed to be beyond existing drilling capabilities. Improvements in drilling and associated technologies and advances in sealing methods have prompted a re-examination of this option for the disposal of high-level radioactive wastes, including spent fuel and plutonium. Since the 1950s, studies of deep boreholes have involved minimal investment. However, deep borehole disposal offers a potentially safer, more secure, cost-effective and environmentally sound solution for the long-term management of high-level radioactive waste than mined repositories. Potentially it could accommodate most of the world's spent fuel inventory. This paper discusses the concept, the status of existing supporting equipment and technologies and the challenges that remain. In recent years, geological disposal of radioactive waste has focused on placement of high- and intermediate-level wastes in mined underground caverns at depths of 500–800 m. Notwithstanding the billions of dollars spent to date on this approach, the difficulty of finding suitable sites and demonstrating to the public and regulators that a robust safety case can be developed has frustrated attempts to implement disposal programmes in several countries, and no disposal facility for spent nuclear fuel exists anywhere. The concept of deep borehole disposal was first considered in the 1950s, but was rejected as it was believed to be beyond existing drilling capabilities. Improvements in drilling and associated technologies and advances in sealing methods have prompted a re-examination of this option for the disposal of high-level radioactive wastes, including spent fuel and plutonium. Since the 1950s, studies of deep boreholes have involved minimal investment. However, deep borehole disposal offers a potentially safer, more secure, cost-effective and environmentally sound solution for the long-term management of high-level radioactive waste than mined repositories. Potentially it could accommodate most of the world's spent fuel inventory. This paper discusses the concept, the status of existing supporting equipment and technologies and the challenges that remain.