Time-dependent treatment of scattering: Integral equation approaches using the time-dependent amplitude density

Abstract
The time-dependent form of the Lippmann–Schwinger integral equation is used as the basis of several new wave packet propagation schemes. These can be formulated in terms of either the time-dependent wave function or a time-dependent amplitude density. The latter is nonzero only in the region of configuration space for which the potential is nonzero, thereby in principle obviating the necessity of large grids or the use of complex absorbing potentials when resonances cause long collision times (leading, consequently, to long propagation times). Transition amplitudes are obtained in terms of Fourier transforms of the amplitude density from the time to the energy domain. The approach is illustrated by an application to a standard potential scattering model problem where, as in previous studies, the action of the kinetic energy operator is evaluated by fast Fourier transform (FFT) techniques.