Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation

Abstract
A nonlocal nonlinear Schrödinger (NLS) equation was recently introduced and shown to be an integrable infinite dimensional Hamiltonian evolution equation. In this paper a detailed study of the inverse scattering transform of this nonlocal NLS equation is carried out. The direct and inverse scattering problems are analyzed. Key symmetries of the eigenfunctions and scattering data and conserved quantities are obtained. The inverse scattering theory is developed by using a novel left–right Riemann–Hilbert problem. The Cauchy problem for the nonlocal NLS equation is formulated and methods to find pure soliton solutions are presented; this leads to explicit time-periodic one and two soliton solutions. A detailed comparison with the classical NLS equation is given and brief remarks about nonlocal versions of the modified Korteweg–de Vries and sine-Gordon equations are made.

This publication has 21 references indexed in Scilit: