Efficient terahertz generation by optical rectification at 1035 nm

Abstract
We demonstrate efficient generation of THz pulses by optical rectification of 1.03 um wavelength laser pulses in LiNbO3 using tilted pulse front excitation for velocity matching between the optical and THz fields. Pulse energies of 100 nJ with a spectral bandwidth of up to 2.5 THz were obtained at a pump energy of 400 uJ and 300 fs pulse duration. This conversion efficiency of 2.5×10-4 was an order of magnitude higher than that obtained with collinear optical recitification in GaP, and far higher still than that measured using ZnTe in an optimized geometry. Using a simple model we demonstrate that two- and three-photon absorption strongly limit the THz generation efficiency at high pump fluences in ZnTe and GaP respectively.