The star formation history of early-type galaxies as a function of mass and environment

Preprint
Abstract
Using the third data release of the Sloan Digital Sky Survey (SDSS) we have rigorously defined a volume limited sample of early-type galaxies in the redshift range z < 0.1. We have defined the density of the local environment for each galaxy using a method which takes account of the redshift bias introduced by survey boundaries if traditional methods are used. At luminosities greater than our absolute r-band magnitude cutoff of -20.45 the mean density of environment shows no trend with redshift. We calculate the Lick indices for the entire sample and correct for aperture effects and velocity dispersion in a model independent way. Although we find no dependence of redshift or luminosity with environment we do find that the mean velocity dispersion, sigma, of early-type galaxies in dense environments tends to be higher than in low density environments. Taking account of this effect we find that several indices show small but very significant trends with environment that are not the result of the correlation between indices and velocity dispersion. The statistical significance of the data is sufficiently high to reveal that models accounting only for alpha-enhancement struggle to produce a consistent picture of age and metallicity of the sample galaxies, whereas a model that also includes carbon enhancement fares much better. We find that early-type galaxies in the field are younger than those in environments typical of clusters but that neither metallicity, alpha-enhancement nor carbon enhancement are influenced by the environment. The youngest early-type galaxies in both field and cluster environments are those with the lowest sigma. However, there is some evidence that the objects with the largest sigma are slightly younger, especially in denser environments.