Development of actuated and sensor integrated forceps for minimally invasive robotic surger

Abstract
In minimally invasive surgery (MIS) the patient's skin forms a spatial barrier between the operation area and the surgeon. This prevents direct access to the operation site which causes a lack of dexterity and limits the sensation of tissue manipulation forces, therefore complicating MIS procedures significantly. A telepresence approach can overcome these limitations: Additional degrees of freedom (DoF) inside the patient provide full manipulability and force torque sensors at the distal end of the instrument allow precise measurement of interaction forces. Using a suitable man-machine interface and free cartesian motion kinaesthetic feedback can be achieved, thus providing a virtual open surgery environment to the surgeon. This article focuses on the development and first results of actuated and sensor integrated instruments as part of the DLR minimally invasive robotic surgery (MIRS) setup. The instruments as a front-end part of the MIRS setup form one base of a telepresence working environment and are crucial for semi-autonomous functions, e.g. motion compensation.