Functional Organization of Speed Tuned Neurons in Visual Area MT

Abstract
We analyzed the functional organization of speed tuned neurons in extrastriate visual area MT. We sought to determine whether neurons tuned for particular speeds are clustered spatially and whether such spatial clusters are elongated normal to the cortical surface so as to form speed columns. Our data showed that MT neurons are indeed clustered according to preferred speed. Multiunit recordings were speed tuned, and the speed tuning of these signals was well correlated with the speed tuning of single neurons recorded simultaneously. To determine whether speed columns exist in MT, we compared the rates at which preferred speed changed in electrode tracks that traversed MT obliquely and normally to the cortical surface. If speed columns exist, the preferred speed should change at a faster rate during oblique electrode tracks. We found, however, that preferred speed changed at similar rates for either type of penetration. In the same data set, the rate of change of preferred direction and preferred disparity differed substantially in normal and oblique penetrations as expected from the known columnar organization of MT. Thus our results suggest that a columnar organization for speed tuned neurons does not exist in MT.