Abstract
This paper deals with the comparison of defluoridation efficiency of two defluoridation agents by the use of dicalcium phosphate dihydrate (DCPD) and lacunar hydroxyapatite (L-Hap) as a fluoride sorbents. The DCPD and L-HAp are characterized by using XRD and FTIR techniques. Defluoridation of synthetic solution of sodium fluoride (NaF) and natural waters of Koudoumawa are studied. The fluoride removal capacity is as follows: DCPD: (26.37 mg.g-1; 0.0174 g, 9.81 mg.g-1; 0.1012 g) and L-Hap: (18.96 mg.g-1; 0.0174 g, 8.00 mg.g-1; 0.1012 g). The optimum 0.0623 g of DCPD/100 mL dosage of synthetic solution could bring down the level of fluoride within the tolerance limit, [F-] = 0.38 mg/l (WHO guideline value = 0.8 mg/l), the pH rise is 5.10 and the defluoridation time is 72 h. For L-Hap, it is 0.1012 g of L-Hap/100 mL, [F-] = 1.98 mg/l in the same conditions. For Koundoumawa natural waters, 0.0527 g of L-Hap/100 mL of solution could bring down the level of fluoride, [F-] = 0.84 mg/l. New mechanisms of fluoride removal by DCPD and L-HAp are proposed from which it is established that this material removes fluoride by ion-exchange, adsorption process, dissolution, precipitation and co-precipitation. Key words: Defluoridation, dicalcium phosphate dihydrate (DCPD), lacunar hydroxyapatite (L-Hap), adsorption, ion-exchange, dissolution-precipitation.