Effect of Phosphatidyl Inositol 3-Kinase, Extracellular Signal-Regulated Kinases 1/2, and p38 Mitogen-Activated Protein Kinase Inhibition on Osteogenic Differentiation of Muscle-Derived Stem Cells

Abstract
Skeletal muscle-derived stem cells (MDSCs) can undergo osteogenesis when treated with bone morphogenetic proteins (BMPs), making them a potential cell source for bone tissue engineering. The signaling pathways that regulate BMP4-induced osteogenesis in MDSCs are not well understood, although they may provide a means to better regulate differentiation during bone regeneration. The objective of this study was to characterize the signaling pathways involved in the BMP4-induced osteogenesis of MDSCs. Cells were treated with BMP4 and specific inhibitors to the extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and phosphatidyl inositol 3-kinase (PI3K) pathways (PD98059, SB203580, and Ly294002, respectively). Cellular proliferation, expression of osteoblast-related genes, alkaline phosphatase (ALP) activity, and tissue mineralization were measured to determine the role of each pathway in the osteogenic differentiation of MDSCs. Inhibition of the ERK1/2 pathway increased ALP activity and mineralization, whereas inhibition of the p38 MAPK pathway decreased osteogenesis, suggesting opposing roles of these pathways in the BMP4-induced osteogenesis of MDSCs. Inhibition of the PI3K pathway significantly increased mineralization by MDSCs. These findings highlight the involvement of the ERK1/2, p38 MAPK, and PI3K pathways in opposing capacities in MDSC differentiation and warrant further investigation, as it may identify novel therapeutic targets for the development of stem cell-based therapies for bone tissue engineering.

This publication has 57 references indexed in Scilit: