Investigation of Wide-Band Microstrip Slot Antenna

Abstract
This paper presents the simulation and experimental investigations of a printed microstrip slot antenna. It is a quarter wavelength monopole slot cut in the finite ground plane edge, and fed electromagnetically by a microstrip transmission line. It provides a wide impedance bandwidth adjustable by variation of its parameters, such as the relative permittivity and thickness of the substrate, width, and location of the slot in the ground plane, and feed and ground plane dimensions. The ground plane is small, 50 mm/spl times/80 mm, and is about the size of a typical PC wireless card. At the center frequency of 3.00 GHz, its width of 50 mm is about /spl lambda//2 and influences the slot impedance and bandwidth significantly. An impedance bandwidth (S/sub 11/=-10 dB) of up to about 60% is achieved by individually optimizing its parameters. The simulation results are confirmed experimentally. A dual complementary slot antenna configuration is also investigated for the polarization diversity.

This publication has 5 references indexed in Scilit: