Abstract
Flow visualization by the schlieren technique in the neighbourhood of a fully developed cavity on two axisymmetric headforms has shown the existence of laminar boundary-layer separation upstream of cavitation separation, and the distance between the two separations to be strongly dependent on Reynolds number. Based on present results, a semi-empirical method is developed to predict the position of cavitation separation on a smooth body. The method applies only in the Reynolds-number range when the cavitating body possesses laminar boundary-layer separation under non-cavitating conditions. Calculated positions of cavitation separation on a sphere by the method show good agreement with experimentally observed positions.