Abstract
Humanoid robots are required to make a variety of dynamics and even expressive motions in changing environments. However, the conventional methods for generating humanoid motions fail do achieve this requirement since they can only generate quite artificial and predefined motions through rather complicated optimization processes. In this paper, we propose the concept of "dynamics filter" which transforms a physically inconsistent motion into a consistent one, and provide an example of its implementation using feedback control and local optimization. The optimization is based on the equation of motion of constrained kinematic chains, which is derived from our previously proposed method for computing the dynamics of structure-varying kinematic chains. The proposed method can be applied to online motion generator of humanoid robots.

This publication has 13 references indexed in Scilit: