Abstract
The freeze-etching technique must be improved if structures at the molecular size level are to be seen. The limitations of the technique are discussed here together with the progress made in alleviating them. The vitrification of living specimens is limited by the fact that very high freezing rates are needed. The critical freezing rate can be lowered on the one hand by the introduction of antifreeze agents, on the other hand by the application of high hydrostatic pressure. The fracture process may cause structural distortions in the fracture face of the frozen specimen. The ‘double-replica’ method allows one to evaluate such artefacts and provides an insight into the way that membranes split. During etching there exists the danger of contaminating the fracture faces with condensable gases. Because of specimen temperatures below —110 °C, special care has to be taken in eliminating water vapour from the high vacuum. An improvement in coating freeze-etched specimens has resulted from the application of electron guns for evaporation of the highest melting-point metals. If heat transfer from gun to specimen is reduced to a minimum, Pt, Ir, Ta, W and C can be used for shadow casting. Best results are obtained with Pt-C and Ta-W . With the help of decoration effects Pt-C shadow castings give the most information about the fine structural details of the specimen.