Rapid, Futile K+ Cycling and Pool-Size Dynamics Define Low-Affinity Potassium Transport in Barley

Abstract
Using the short-lived radiotracer 42K+, we present a comprehensive subcellular flux analysis of low-affinity K+ transport in plants. We overturn the paradigm of cytosolic K+ pool-size homeostasis and demonstrate that low-affinity K+ transport is characterized by futile cycling of K+ at the plasma membrane. Using two methods of compartmental analysis in intact seedlings of barley (Hordeum vulgare L. cv Klondike), we present data for steady-state unidirectional influx, efflux, net flux, cytosolic pool size, and exchange kinetics, and show that, with increasing external [K+] ([K+]ext), both influx and efflux increase dramatically, and that the ratio of efflux to influx exceeds 70% at [K+]ext ≥ 20 mm. Increasing [K+]ext, furthermore, leads to a shortening of the half-time for cytosolic K+ exchange, to values 2 to 3 times lower than are characteristic of high-affinity transport. Cytosolic K+ concentrations are shown to vary between 40 and 200 mm, depending on [K+]ext, on nitrogen treatment (NO3− or NH4+), and on the dominant mode of transport (high- or low-affinity transport), illustrating the dynamic nature of the cytosolic K+ pool, rather than its homeostatic maintenance. Based on measurements of trans-plasma membrane electrical potential, estimates of cytosolic K+ pool size, and the magnitude of unidirectional K+ fluxes, we describe efflux as the most energetically demanding of the cellular K+ fluxes that constitute low-affinity transport.