Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors

Abstract
2‐Thioribothymidine (s2T), a modified uridine, is found at position 54 in transfer RNAs (tRNAs) from several thermophiles; s2T stabilizes the L‐shaped structure of tRNA and is essential for growth at higher temperatures. Here, we identified an ATPase (tRNA‐two‐thiouridine C, TtuC) required for the 2‐thiolation of s2T in Thermus thermophilus and examined in vitro s2T formation by TtuC and previously identified s2T‐biosynthetic proteins (TtuA, TtuB, and cysteine desulphurases). The C‐terminal glycine of TtuB is first activated as an acyl‐adenylate by TtuC and then thiocarboxylated by cysteine desulphurases. The sulphur atom of thiocarboxylated TtuB is transferred to tRNA by TtuA. In a ttuC mutant of T. thermophilus, not only s2T, but also molybdenum cofactor and thiamin were not synthesized, suggesting that TtuC is shared among these biosynthetic pathways. Furthermore, we found that a TtuB—TtuC thioester was formed in vitro, which was similar to the ubiquitin‐E1 thioester, a key intermediate in the ubiquitin system. The results are discussed in relation to the mechanism and evolution of the eukaryotic ubiquitin system.

This publication has 49 references indexed in Scilit: