A Successive Linear Approximation Procedure for Stochastic, Dynamic Vehicle Allocation Problems

Abstract
The Stochastic Dynamic Vehicle Allocation problem involves managing a fleet of vehicles over time in an uncertain demand environment to maximize expected total profits. The problem is formulated as a Stochastic Programming problem. A new heuristic algorithm is developed and is contrasted to various deterministic approximations. The paper presents computational results that were obtained by employing a Rolling Horizon Procedure to simulate the operation of the truckload carrier. Results indicate the superiority of the new algorithm over other approaches tested.