Interaction between maternal effects and temperature affects diapause occurrence in the cricket Allonemobius socius

Abstract
The induction of diapause can be adaptive for egg survival during unfavorable conditions, while direct development can be advantageous under favorable conditions by allowing additional generations to exploit abundant resources. Therefore, the physiological capability of a female to respond to environmental cues indicative of habitat quality by producing eggs of the appropriate developmental phenotype should be under strong selection. Additionally, developing embryos may alter the developmental trajectory initiated by the female in response to changing environmental conditions. In this study, we used a cross-fostering approach to isolate the maternal effects of parental diapause history (not previously studied) and egg-laying temperature from the influence of the incubation environment experienced by the developing embryo on the proportion of diapause eggs produced by the striped ground cricket, Allonemobius socius. We found that an interaction between egg-incubation temperature and parental diapause history strongly affected the proportion of diapause eggs produced and the proportion of eggs that hatched within a 16–18 day incubation period, while egg-laying temperature and all other interactions did not. These novel results indicate that embryos can respond directly to the environmental conditions they experience during development, but that their ability to do so is influenced by maternal effects such as parental diapause history. The results of this study not only provide evidence, for the first time, of parental diapause history affecting diapause proportions, but also raise additional questions about the mechanism by which environmental information is transmitted from parent to offspring and how offspring are able to respond to conditions experienced during their own development.