VORTEX-INDUCED VIBRATIONS

Abstract
▪ Abstract This review summarizes fundamental results and discoveries concerning vortex-induced vibration (VIV), that have been made over the last two decades, many of which are related to the push to explore very low mass and damping, and to new computational and experimental techniques that were hitherto not available. We bring together new concepts and phenomena generic to VIV systems, and pay special attention to the vortex dynamics and energy transfer that give rise to modes of vibration, the importance of mass and damping, the concept of a critical mass, the relationship between force and vorticity, and the concept of “effective elasticity,” among other points. We present new vortex wake modes, generally in the framework of a map of vortex modes compiled from forced vibration studies, some of which cause free vibration. Some discussion focuses on topics of current debate, such as the decomposition of force, the relevance of the paradigm flow of an elastically mounted cylinder to more complex systems, and the relationship between forced and free vibration.

This publication has 99 references indexed in Scilit: