Shannon's entropy and fractal dimension provide an objective account of bone tissue organization during calvarial bone regeneration

Abstract
The regeneration of compact bone involves the deposition of a poorly organized connective tissue template that remodels into compact lamellar bone. An objective description of this process is difficult because classical histomorphometry is unable to correctly characterize qualitative changes in tissue complexity. In this study, we demonstrated the use of two distinct methods of image texture analysis, the Shannon's entropy [standard error (SE)], and the fractal dimension (FD) to characterize the formation and remodeling of newly formed compact bone within two different polyanionic collagen‐elastin matrices. The matrices were implanted in defects created into parietal bones of rats. The SE and FD were calculated for histological images of the experimental groups collected 3, 7, 15, 30, 60, and 365 days postsurgery and for the original bone only at day 365. Results showed that the SE and the FD initially increased and then diminished for all groups from day 3 to day 365 approaching the values of the original bone. These results are consistent with poor tissue organization during early osteogenesis that remodels into an organized lamellar structure, showing that these methods can be valuable tools to describe bone tissue remodeling during the regeneration process of compact bones. Microsc. Res. Tech., 2008.