Quantifying mixing in viscously unstable porous media flows

Abstract
Viscous fingering is a well-known hydrodynamic instability that sets in when a less viscous fluid displaces a more viscous fluid. When the two fluids are miscible, viscous fingering introduces disorder in the velocity field and exerts a fundamental control on the rate at which the fluids mix. Here we analyze the characteristic signature of the mixing process in viscously unstable flows, by means of high-resolution numerical simulations using a computational strategy that is stable for arbitrary viscosity ratios. We propose a reduced-order model of mixing, which, in the spirit of turbulence modeling and in contrast with previous approaches, recognizes the fundamental role played by the mechanical dissipation rate. The proposed model captures the nontrivial interplay between channeling and creation of interfacial area as a result of viscous fingering.Eni S.p.A. (Firm) (Multiscale Reservoir Science Project)Atlantic Richfield Co. (Chair in Energy Studies

This publication has 77 references indexed in Scilit: