Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension.

Abstract
In isolated blood vessels, acetylcholine releases endothelium-derived relaxing factor (EDRF). In vivo, the vasodilator action of acetylcholine may be mediated by EDRF, but prostacyclin or prejunctional inhibition of adrenergic neurotransmission may also be involved. Therefore, we investigated whether acetylcholine releases EDRF in humans in vivo and, if so, whether the response altered in essential hypertension. Acetylcholine was infused into the brachial artery, and forearm blood flow measured by venous occlusion plethysmography. In control subjects, acetylcholine (0.02-16 micrograms/min/100 ml tissue) increased flow from 2.4 +/- 5.0 to 20.6 +/- 5.2 ml/min/100 ml tissue (n = 14; p less than 0.05) and decreased forearm vascular resistance from 42.0 +/- 4.1 to 6.0 +/- 1.4 units (p less than 0.03), a response comparable to that of sodium nitroprusside (0.6 micrograms/min ml tissue). Acetylsalicylic acid (500 mg i.v.) given to block vascular prostacyclin production did not alter the response (n = 14). alpha-Adrenoceptor blockade by phentolamine (12 micrograms/min/100 ml tissue) did not prevent the increase in flow evoked by acetylcholine. In hypertensive patients, the decrease in forearm vascular resistance induced by acetylcholine but not evoked by sodium nitroprusside was reduced as compared with controls (14.5 +/- 3.1 and 6.1 +/- 1.6 units, respectively; n = 8; p less than 0.05). Thus, the vascular effects of acetylcholine in the human forearm circulation are independent of prostaglandins and adrenergic neurotransmission and therefore are most likely to be mediated by EDRF; the acetylcholine-induced release of EDRF is blunted in patients with essential hypertension.