Abstract
Genes that regulate the development of the fruit fly Drosophila melanogaster exist as tightly linked clusters in at least two cases. These clusters, the bithorax complex (BX-C) and the Antennapedia complex (ANT-C), both contain multiple homoeotic loci: mutations in each locus cause a transformation of one part of the fly into another. Several repetitive DNA sequences, including at least one transposon, were mapped in the ANT-C. DNA from the 3' exon of Antennapedia (Antp), a homoeotic locus in the ANT-C, hybridized weakly to DNA from the 3' exon of Ultrabithorax (Ubx), a homoeotic locus in the BX-C. DNA from each of these 3' exons also hybridized weakly to DNA from the fushi tarazu locus of the ANT-C. The fushi tarazu (ftz) locus controls the number and differentiation of segments in the developing embryo. Sequence analysis of the cross-hybridizing DNA from the three loci revealed the conservation of predicted amino acid sequences derived from coding parts of the genes. This suggests that two homoeotic loci and a "segment-deficient" locus encode protein products with partially shared structures and that the three loci may be evolutionarily and functionally related.