Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature

Abstract
Boron nitride nanotubes (BN-NTs) were synthesized by using excimer laser ablation at 1200 °C in different carrier gases. The main characteristic of the BN-NTs produced by this method is that nanotubes are of only one to three atomic layers thick, which could be attributed to the dominance of the axial growth rate over the radial growth rate. The diameter of the BN-NTs ranged from 1.5 to 8 nm. The tips of the BN-NTs are either a flat cap or of polygonal termination, in contrast to the conical ends of carbon nanotubes. The atomic ratio of boron to nitrogen as measured by means of parallel electron energy loss spectroscopy is 0.8, which is within the experimental error of the stoichiometry of hexagonal BN structure.