Abstract
An inviscid model of two-dimensional vortex shedding behind a square-based section is developed. The model uses a discrete-vortex approximation for the free shear layers. The motion of the shear layers is computed from the velocities of the discrete vortices, which in turn are derived through a Schwartz-Christoffel transformation of the section. The flow round the body is impulsively started from rest and initially develops symmetrically. The introduction of a small asymmetric disturbance results in asymmetric interaction of the shear layers amplifying into steady vortex-shedding motion.The model is shown to predict the form of vortex shedding, the Strouhal number and some other flow quantities to a good degree of agreement with experimental results.

This publication has 11 references indexed in Scilit: