A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function

Abstract
Dynamic economic dispatch (DED) is one of the main functions of power generation operation and control. It determines the optimal settings of generator units with predicted load demand over a certain period of time. The objective is to operate an electric power system most economically while the system is operating within its security limits. This paper proposes a new hybrid methodology for solving DED. The proposed method is developed,in such a way that a simple evolutionary programming (EP) is applied as a based level search, which can give a good direction to the optimal global region, and a local search sequential quadratic programming (SQP) is used as a fine tuning to determine the optimal solution at the final. A ten-unit test system with nonsmooth fuel cost function is used to illustrate the effectiveness of the proposed method compared with those obtained from EP and SQP alone.

This publication has 16 references indexed in Scilit: