A Review of 3-Dimensional Skin Bioprinting Techniques: Applications, Approaches, and Trends

Abstract
BACKGROUND Tissue engineering is used to fabricate 3-dimensional (3D) artificial scaffolds to create a microenvironment that mimics human tissue. Bioprinting uses biomaterials, cells, and/or bioink to fabricate prospective scaffolds to mirror the structural, compositional, and functional aspects of the skin. Various bioprinting methods (inkjet-based bioprinting, pressure-assisted bioprinting, and laser-assisted bioprinting) have been used for regenerative wound repair and have been characterized based on biocompatibility, cellular microenvironment, cell proliferation, vitality, and morphology. OBJECTIVE This article reviews the basic principles of 3D printing, current 3D skin bioprinting applications and approaches, and future directions for regenerative medical skin constructs. METHODS A comprehensive literature review was conducted using PubMed with keywords "threedimensional printing," "dermatologic surgery," "bioprinting," "reconstructive surgical procedures," "wound healing," "skin grafts," "skin scaffolds," "tissue reconstruction," and "tissue engineering." RESULTS A summary of the different applications and 3-dimensional skin bioprinting techniques is presented. In addition, synthetic, natural, and combination polymers are reviewed. Advantages, disadvantages, indications, and approaches are discussed in depth. CONCLUSION Skin grafting is a dynamic technique of dermal reconstruction that can be successful with comprehensive knowledge of skin bioprinting methods.