Agent-based system for reconfiguration of distributed chemical reactor network operation

Abstract
Control of spatially distributed systems is a challenging problem because of their complex nature, nonlinearity, and generally high order. Agent-based control structures provide a powerful tool for managing distributed systems by utilizing local and global information obtained from the system. A hierarchical, agent-based system with local and global control agents is developed to control networks of interconnected chemical reactors hosting multiple autocatalytic species. The global controller agent dynamically updates the objective of local control agents as the reactor network conditions change. The case illustrated in this paper is to change the dominant species in one CSTR by modifying feed and interconnection flow rates with the constraint of shortest path possible, which causes the least amount of changes in the whole network. The agent-based system and the reactor networks are implemented using the agent-based system development framework RePast