Analysis and Design of a New High-Efficiency Bidirectional Integrated ZVT PWM Converter for DC-Bus and Battery-Bank Interface

Abstract
This paper proposes a high-efficiency bidirectional integrated zero-voltage transition (iZVT) pulsewidth-modulation (PWM) converter for dc-bus and battery-bank interface. The proposed converter can operate as battery charger when the utility is within its acceptable voltage range and can supply energy to critical loads when the utility fails. The converter practically eliminates both low- and high-frequency current ripple on the batteries, thus maximizing battery life without penalizing the volume of the converter. Moreover, soft switching of all switches is achieved using the proposed integrated auxiliary commutation circuit (iACC). Just one iACC is used to provide soft-switching conditions for the three converters that compose the system: the preregulator (boost), the battery charger (bidirectional converter operating as a buck), and the backup converter (bidirectional converter operating as a boost). This auxiliary circuit has few components and low reactive energy, increasing the system's overall efficiency. Experimental results based on a 580-W prototype are presented to validate the analysis and the proposed design procedure and to demonstrate the performance of the proposed approach

This publication has 10 references indexed in Scilit: