Tomato LeAGP‐1 is a plasma membrane‐bound, glycosylphosphatidylinositol‐anchored arabinogalactan‐protein

Abstract
Arabinogalactan-proteins (AGPs) are a class of highly glycosylated, hydroxyproline-rich glycoproteins that function in plant growth and development. Tomato LeAGP-1 represents a major AGP expressed in cultured cells and plants. Based on cDNA and amino acid sequence analyses along with carbohydrate and other biochemical analyses, tomato LeAGP-1 is hypothesized to be a classical AGP localized to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. Here, this hypothesis was tested and supported with the following experiments. First, tomato (Lycopersicon esculentum, cv. UC82B) cotyledon protoplasts were isolated following cell wall digestion with cellulase and pectinase, and LeAGP-1 was immunolocalized to the plasma membrane with a LeAGP-1 antibody. Second, LeAGP-1 was shown to be a major AGP component in plasma membrane vesicles from tomato cv. Bonnie Best suspension-cultured cells by Western blot analysis with the LeAGP-1 antibody. Third, fluorescence microscopy of plasmolysed, transgenic tobacco (Nicotiana tabacum BY-2) suspension-cultured cells expressing a green fluorescent protein (GFP)-LeAGP-1 fusion product demonstrated localization to the plasma membrane and Hechtian threads. Fourth, the GFP-LeAGP-1 fusion protein was present in plasma membrane preparations from these transgenic tobacco cells by Western blot analysis with a GFP antibody. Fifth, GFP-LeAGP-1 secreted into the culture media contained ethanolamine, presumably attached to the C-terminal amino acid residue, consistent with its processing and release from the plasma membrane. Thus, these data support the hypothesis that LeAGP-1 is localized to the plasma membrane via a GPI anchor and suggest possible roles for LeAGP-1 in cellular signalling and matrix remodelling.