Kinetic versus Thermodynamic Control over Growth Process of Electrodeposited Bi/BiSb Superlattice Nanowires

Abstract
The growth mechanism of the electrodeposited single crystalline nanowires is generally considered to follow a three-dimensional to two-dimensional (2D) transition mode, and as for the 2D growth, it is ordinarily considered as a plane growth mode (layer-by-layer growth mechanism). We report in this Letter the growth of Bi/BiSb superlattice nanowires by adopting a charge-controlled pulse electrodeposition technique, and to our best knowledge, different growth modes of the nanowires, the 2D plane growth mode, the tilted plane growth mode, and the curved plane growth mode, were first observed. These growth modes were gathered and analyzed from the perspectives of crystal growth as well as kinetics and thermodynamics. It is shown that the superlattice nanowires are good structures for studying the growth mechanism of electrodeposited nanowires. This work will deeply benefit the understanding of the growth process of the electrodeposited nanowires and provide important experiment data to crystal growth theory.