The benzene molecule as a molecular resonant-tunneling transistor

Abstract
Experiments and theory have so far demonstrated that single molecules can form the core of a two-terminal device. Here we report first-principles calculations of transport through a benzene-1, 4-dithiolate molecule with a third capacitive terminal (gate). We find that the resistance of the molecule rises from its zero-gate-bias value to a value roughly equal to the quantum of resistance (12.9 kΩ) when resonant tunneling through the π* antibonding orbitals occurs.