Abstract
This paper develops three simple ideas about force development during sustained locomotion which provide some insights into the mechanisms that determine why animals change gait, how fast they can run, and how much metabolic energy they consume. The first idea is that the alternate stretch-shorten pattern of activity of the muscles involved in locomotion allows muscle-tendon units to function as springs, affecting the amount of force a given cross-sectional area of muscle develops, and the metabolic requirements of the muscles for force development. Animals select speeds and stride frequencies which optimize the performance of these springs. The second idea is that muscle stress (force/cross-sectional area) determines when animals change gait, how fast they run and their peak accelerations and decelerations. It is proposed that terrestrial birds and mammals develop similar muscle stresses under equivalent conditions (i.e. preferred speed within a gait) and that animals change gaits in order to reduce peak stresses as they increase speed. Finally, evidence is presented to support the idea that it is the time course of force development during locomotion, rather than the mechanical work that the muscles perform, that determines the metabolic cost of locomotion.