EFFECT OF DENSITY INVERSION ON COOLING OF WATER AROUND A CYLINDER IN A RECTANGULAR CAVITY

Abstract
Transient natural convection in water around a cooled horizontal cylinder placed at the center of a rectangular enclosure has been studied. The governing equations were solved by a finite difference method, and the flow structure and temperature distributions have been predicted. The purpose of the present study was to examine the effects of the density inversion and the initial temperature of water on the cooling process. The initial water temperature was varied at 4, 6, 8, and 12°C, white the temperature of the cylinder surface was fixed at 0°C. The timewise variations of the temperature field and the velocity field as well as the mean and local Nusselt numbers on the cylinder surface were compared. Change in the initial water temperature largely affects fluid flows due to the density inversion of water. Complicated flow patterns are observed for initial water temperature higher than 4°; C. Cooling of water is most effective for an initial water temperature of 12°; C.

This publication has 11 references indexed in Scilit: