Abstract
Epigenetic information is encoded by DNA methylation and by covalent modifications of histone tails. While defined epigenetic modification patterns have been frequently correlated with particular states of gene activity, very little is known about the integration level of epigenetic signals. Recent experiments have resulted in the characterization of several epigenetic adaptors that mediate interactions between distinct modifications. These adaptors include methyl-DNA binding proteins, chromatin remodelling enzymes and siRNAs. Complex interactions between epigenetic modifiers and adaptors provide the foundation for the stability of epigenetic inheritance. In addition, they also provide an explanation for the long-range effects of epigenetic mechanisms. We propose that a major aspect of epigenetic regulation lies in the modification of chromosome architecture and that local changes in gene expression would be secondary consequences. This view is consistent with many results from recent genomic analyses.