Mechanism for resistive switching in an oxide-based electrochemical metallization memory

Abstract
A comparison of the asymmetric OFF-state current-voltage characteristics between Cu/ZnO/Pt and Cu/ZnO/Al-doped ZnO (AZO) electrochemical metallization memory (ECM) cells demonstrates that the Cu filament rupture and rejuvenation occur at the ZnO/Pt (or AZO) interface, i.e., the cathodic interface. Therefore, the filament is most likely to have a conical shape, with wider and narrower diameters formed at the anodic and cathodic interfaces, respectively. It is inferred that the filament growth starts at the anode surface and stops at the cathode surface. Our results indicate that oxide-based ECM cells strongly differ from sulfide- and selenide-based ones in the resistive switching mechanism.