Analysis and Mitigation of Sub-Synchronous Resonance for Doubly Fed Induction Generator under VSG Control

Abstract
This paper presents the analysis and mitigation of sub-synchronous resonance (SSR) for doubly fed induction generators (DFIG) under virtual synchronous generator (VSG) control, based on impedance methods. VSGs are considered to have grid-supporting ability and good stability in inductance-based weak grids, and are implemented in renewable power generations, including DFIG systems. However, stability analyses of VSGs for DFIG connecting with series capacitor compensation are absent. Therefore, this paper focuses on the analysis and mitigation of SSR for DFIG under VSG control. Impedance modeling of DFIG systems is used to analyze SSR stability. Based on impedance analysis, the influence of VSG control parameters and the configuration of damping factor of reactive power are discussed. Next, a parameter configuration method to mitigate SSR is proposed. Finally, time-domain simulation and fast fourier transform (FFT) results are given to validate the correctness and effectiveness of the impedance model and parameter configuration methods.